Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Immunol ; 15: 1347871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469305

RESUMO

The antibody- FcγRIIIa interaction triggers key immunological responses such as antibody dependent cellular cytotoxicity (ADCC), making it highly important for therapeutic mAbs. Due to the direct glycan-glycan interaction with FcγRIIIa receptor, differences in antibody glycosylation can drastically influence the binding affinity. Understanding the differential binding of mAb glycoforms is a very important, yet challenging task due to the co-existence of multiple glycoforms in a sample. Affinity liquid chromatography (AC) and affinity capillary electrophoresis (ACE) hyphenated with mass spectrometry (MS) can provide glycoform-resolved affinity profiles of proteins based on their differences in either dissociation (AC) or equilibrium (ACE) constants. To cross-validate the affinity ranking provided by these complementary novel approaches, both techniques were benchmarked using the same FcγRIIIa constructs. Both approaches were able to assess the mAb - FcγRIIIa interaction in a glycoform selective manner and showed a clear increase in binding for fully versus hemi-fucosylated mAbs. Also, other features, such as increasing affinity with elevated galactosylation or the binding affinity for high mannose glycoforms were consistent. We further applied these approaches to assess the binding towards the F158 allotype of FcγRIIIa, which was not reported before. The FcγRIIIa F158 allotype showed a very similar profile compared to the V158 receptor with the strongest increase in binding due to afucosylation and only a slight increase in binding with additional galactosylation. Both techniques showed a decrease of the binding affinity for high mannose glycoforms for FcγRIIIa F158 compared to the V158 variant. Overall, both approaches provided very comparable results in line with orthogonal methods proving the capabilities of separation-based affinity approaches to study FcγR binding of antibody glycoforms.


Assuntos
Imunoglobulina G , Receptores de IgG , Receptores de IgG/metabolismo , Imunoglobulina G/metabolismo , Manose , Benchmarking , Anticorpos Monoclonais/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas
2.
Nat Protoc ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383719

RESUMO

Immunoglobulin G (IgG) fragment crystallizable (Fc) glycosylation modulates effector functions such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Consequently, assessing IgG Fc glycosylation is important for understanding the role of antibodies in infectious, alloimmune and autoimmune diseases. GlYcoLISA determines the Fc glycosylation of antigen-specific IgG by an immunosorbent assay with a liquid chromatography-mass spectrometry (LC-MS) readout. Detection of antigen-specific IgG glycosylation in a subclass- and site-specific manner is realized by LC-MS-based glycopeptide analysis after proteolytic cleavage. GlYcoLISA addresses challenges related to the low abundance of specific IgG and the high background of total IgG by using well-established immunosorbent assays for purifying antibodies of the desired specificity using immobilized antigen. Alternative methods with sufficient glycan resolution lack these important specificities. GlYcoLISA is performed in a 96-well plate format, and the analysis of 160 samples takes ~5 d, with 1 d for sample preparation, 2 d of LC-MS measurement and 2 d for partially automated data processing. GlYcoLISA requires expertise in LC-MS operation and data processing.

3.
Biomolecules ; 14(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254725

RESUMO

Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX.


Assuntos
Eritropoetina , Humanos , Glicosilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acetilação
4.
Front Immunol ; 14: 1214945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841251

RESUMO

Introduction: Immunoglobulin G (IgG) contains a conserved N-glycan in the fragment crystallizable (Fc), modulating its structure and effector functions. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) alterations of IgG Fc-glycosylation have been observed to correlate with the disease course. Here, we examined longitudinal changes in N-linked Fc glycans of IgG in an AAV patient cohort and their relationship with disease flares. Methods: Using liquid chromatography coupled with mass spectrometry, we analysed IgG Fc-glycosylation in 410 longitudinal samples from 96 individuals with AAV. Results: Analysis of the cross-sectional differences as well as longitudinal changes demonstrated that IgGs of relapsing PR3-ANCA patients have higher ΔFc-bisection at diagnosis (P = 0.004) and exhibit a decrease in Fc-sialylation prior to the relapse (P = 0.0004), discriminating them from non-relapsing patients. Most importantly, PR3-ANCA patients who experienced an ANCA rise and relapsed shortly thereafter, exhibit lower IgG Fc-fucosylation levels compared to non-relapsing patients already 9 months before relapse (P = 0.02). Discussion: Our data indicate that IgG Fc-bisection correlates with long-term treatment outcome, while lower IgG Fc-fucosylation and sialylation associate with impending relapse. Overall, our study replicated the previously published reduction in total IgG Fc-sialylation at the time of relapse, but showed additionally that its onset precedes relapse. Furthermore, our findings on IgG fucosylation and bisection are entirely new. All these IgG Fc-glycosylation features may have the potential to predict a relapse either independently or in combination with known risk factors, such as a rise in ANCA titre.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Humanos , Glicosilação , Estudos Transversais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Imunoglobulina G , Fragmentos de Imunoglobulinas , Doença Crônica , Recidiva , Polissacarídeos
5.
MAbs ; 14(1): 2145929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383465

RESUMO

A relatively low clearance is one of the prominent favorable features of immunoglobulin G1-based therapeutic monoclonal antibodies (mAbs). Various studies have observed differential clearance of mAb glycoforms, including oligomannose glycoforms, which are considered a critical quality attribute because they show higher clearance than complex type glycoforms. Glycoform clearance, however, has not previously been studied after subcutaneous injection or in a porcine model system. Here, we performed glycoform-resolved pharmacokinetic (PK) analysis of two mAbs in Göttingen minipigs. We found glycoform effects on clearance to be largely the same for subcutaneous and intravenous injection and in line with observations in other species. Oligomannose glycoforms were cleared up to 25% faster and monoantennary glycoforms up to 8% faster than agalactosylated complex glycoforms. Sialylated glycoforms were cleared at approximately the same rate as fully galactosylated glycoforms. Importantly, we report here an impact of galactosylation on the PK of a mAb for the first time. Whether increased galactosylation led to slower or faster clearance seemed to depend on the overall glycosylation profile. When clearance of galactosylated glycoforms was slower, the mAb showed higher galactosylation in serum at maximum concentration after subcutaneous injection compared to both intravenous injection and the injected material. Whether this higher galactosylation after subcutaneous injection has consequences for therapeutic efficacy remains to be investigated. In conclusion, preferential clearance of antibody glycoforms can be simulated in the minipig model with intravenous as well as subcutaneous injections. Furthermore, we observed a glycoform bias in the absorption from skin into circulation after subcutaneous injection based on galactosylation.Abbreviations: AUC - area under the curve; CL/F - apparent clearance as a function of bioavailability following SC administration; Cmax - maximum serum concentration; CQA critical quality attribute; FcγR - Fc gamma receptor; IgG - immunoglobulin G; IV - intravenous; LC-MS - liquid chromatography - mass spectrometry; mAb - therapeutic monoclonal antibody; PK - pharmacokinetics; SC - subcutaneous; TMDD - target-mediated drug disposition.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Animais , Suínos , Injeções Intravenosas , Porco Miniatura/metabolismo , Imunoglobulina G/metabolismo , Glicosilação , Injeções Subcutâneas
7.
Glycobiology ; 32(8): 651-663, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35452121

RESUMO

Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.


Assuntos
Glicômica , Proteínas , Glicômica/métodos , Glicosilação , Humanos , Polissacarídeos/química , Proteínas/metabolismo
8.
Sci Rep ; 11(1): 24045, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911982

RESUMO

As a lymphoid organ, the spleen hosts a wide range of immune cell populations, which not only remove blood-borne antigens, but also generate and regulate antigen-specific immune responses. In particular, the splenic microenvironment has been demonstrated to play a prominent role in adaptive immune responses to enveloped viral infections and alloantigens. During both types of immunizations, antigen-specific immunoglobulins G (IgGs) have been characterized by the reduced amount of fucose present on N-linked glycans of the fragment crystallizable (Fc) region. These glycans are essential for mediating the induction of immune effector functions. Therefore, we hypothesized that a spleen may modulate humoral responses and serve as a preferential site for afucosylated IgG responses, which potentially play a role in immune thrombocytopenia (ITP) pathogenesis. To determine the role of the spleen in IgG-Fc glycosylation, we performed IgG subclass-specific liquid chromatography-mass spectrometry (LC-MS) analysis of Fc glycosylation in a large cohort of individuals splenectomized due to trauma, due to ITP, or spherocytosis. IgG-Fc fucosylation was consistently increased after splenectomy, while no effects for IgG-Fc galactosylation and sialylation were observed. An increase in IgG1- and IgG2/3-Fc fucosylation level upon splenectomy has been reported here for the first time, suggesting that immune responses occurring in the spleen may be particularly prone to generate afucosylated IgG responses. Surprisingly, the level of total IgG-Fc fucosylation was decreased in ITP patients compared to healthy controls. Overall, our results suggest a yet unrecognized role of the spleen in either the induction or maintenance of afucosylated IgG responses by B cells.


Assuntos
Imunoglobulina G/imunologia , Baço/imunologia , Adolescente , Adulto , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Estudos de Casos e Controles , Criança , Feminino , Fucose/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Doenças do Sistema Imunitário/diagnóstico , Doenças do Sistema Imunitário/etiologia , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/terapia , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/etiologia , Púrpura Trombocitopênica Idiopática/metabolismo , Púrpura Trombocitopênica Idiopática/terapia , Baço/metabolismo , Esplenectomia , Adulto Jovem
9.
MAbs ; 13(1): 1982847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34674601

RESUMO

The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcÉ£R). FcÉ£RIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward FcÉ£RIIIb (KD ~ 10 µM) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography-mass spectrometry (AC-MS) assay for analyzing IgG-FcÉ£RIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on FcÉ£RIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure-function relationships of the IgG-FcÉ£RIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Afinidade de Anticorpos , Cromatografia de Afinidade , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas , Receptores Fc/metabolismo
10.
J Proteome Res ; 20(5): 2935-2941, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33909442

RESUMO

Immunoglobulin G (IgG) glycosylation is studied in biological samples to develop clinical markers for precision medicine, for example, in autoimmune diseases and oncology. Inappropriate storage of proteins, lipids, or metabolites can lead to degradation or modification of biomolecular features, which can have a strong negative impact on accuracy and precision of clinical omics studies. Regarding the preservation of IgG glycosylation, the range of appropriate storage conditions and time frame is understudied. Therefore, we investigated the effect of storage on IgG Fc N-glycosylation in the commonly analyzed biofluids, serum and plasma. Short-term storage and accelerated storage stability were tested by incubating samples from three healthy donors under stress conditions of up to 50 °C for 2 weeks using -80 °C for 2 weeks as the reference condition. All tested IgG glycosylation features-sialylation, galactosylation, bisection, and fucosylation-remained unchanged up to room temperature as well as during multiple freeze-thaw cycles and exposure to light. Only when subjected to 37 °C or 50 °C for 2 weeks, galactosylation and sialylation subtly changed. Therefore, clinical IgG glycosylation analysis does not rely as heavily on mild serum and plasma storage conditions and timely analysis as many other omics analyses.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Biomarcadores , Glicosilação , Imunoglobulina G/metabolismo
11.
MAbs ; 13(1): 1865596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382957

RESUMO

Good pharmacokinetic (PK) behavior is a key prerequisite for sufficient efficacy of therapeutic monoclonal antibodies (mAbs). Fc glycosylation is a critical quality attribute (CQA) of mAbs, due to its impact on stability and effector functions. However, the effects of various IgG Fc glycoforms on antibody PK remain unclear. We used a combination of glycoengineering and glycoform-resolved PK measurements by mass spectrometry (MS) to assess glycoform effects on PK. Four differently glycoengineered mAbs, each still containing multiple glycoforms, were separately injected into rats. Rat models have been shown to be predictive of human PK. At different time points, blood was taken, from which the mAbs were purified and analyzed with a liquid chromatography-MS-based bottom-up glycoproteomics approach. This allowed us to follow changes in the glycosylation profiles of each glycoengineered mAb over time. Enzyme-linked immunosorbent assay measurements provided an absolute concentration in the form of a sum value for all glycoforms. Information from both readouts was then combined to calculate PK parameters per glycoform. Thereby, multiple glycoform kinetics were resolved within one mAb preparation. We confirmed increased clearance of high-mannose (Man5) and hybrid-type (Man5G0) glycoforms. Specifically, Man5 showed a 1.8 to 2.6-fold higher clearance than agalactosylated, complex glycans (G0F). Unexpectedly, clearance was even higher (4.7-fold) for the hybrid-type glycan Man5G0. In contrast, clearance of agalactosylated, monoantennary glycoforms (G0F-N) was only slightly increased over G0F (1.2 to 1.4-fold). Thus, monoantennary, hybrid-type and high-mannose glycoforms should be distinguished in CQA assessments. Strikingly, α2,3-linked sialylation did not affect clearance, contradicting the involvement of the asialoglycoprotein receptor in mAb clearance.


Assuntos
Anticorpos Monoclonais/metabolismo , Cromatografia Líquida/métodos , Glicopeptídeos/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Espectrometria de Massas/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Ensaio de Imunoadsorção Enzimática , Glicopeptídeos/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Manose/metabolismo , Polissacarídeos/metabolismo , Engenharia de Proteínas/métodos , Proteômica/métodos , Ratos Wistar
12.
Glycoconj J ; 37(6): 691-702, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33064245

RESUMO

Changes in human IgG galactosylation and sialylation have been associated with several inflammatory diseases which are a major burden on the health care system. A large body of work on well-established glycomic and glycopeptidomic assays has repeatedly demonstrated inflammation-induced changes in IgG glycosylation. However, these assays are usually based on specialized analytical instrumentation which could be considered a technical barrier for uptake by some laboratories. Hence there is a growing demand for simple biochemical assays for analyzing these glycosylation changes. We have addressed this need by introducing a novel glycosidase plate-based assay for the absolute quantification of galactosylation and sialylation on IgG. IgG glycoproteins are treated with specific exoglycosidases to release the galactose and/or sialic acid residues. The released galactose monosaccharides are subsequently used in an enzymatic redox reaction that produces a fluorescence signal that is quantitative for the amount of galactosylation and, in-turn, sialylation on IgG. The glycosidase plate-based assay has the potential to be a simple, initial screening assay or an alternative assay to the usage of high-end analytical platforms such as HILIC-FLD-MSn when considering the analysis of galactosylation and sialylation on IgG. We have demonstrated this by comparing our assay to an industrial established HILIC-FLD-MSn glycomic analysis of 15 patient samples and obtained a Pearson's r correlation coefficient of 0.8208 between the two methods.


Assuntos
Galactose/genética , Imunoglobulina G/química , Ácido N-Acetilneuramínico/genética , Galactose/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosídeo Hidrolases/química , Glicosilação , Humanos , Imunoglobulina G/genética
13.
Front Immunol ; 11: 2049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973813

RESUMO

Current approaches to study glycosylation of polyclonal human immunoglobulins G (IgG) usually imply protein digestion or glycan release. While these approaches allow in-depth characterization, they also result in a loss of valuable information regarding certain subclasses, allotypes and co-occuring post-translational modifications (PTMs). Unfortunately, the high variability of polyclonal IgGs makes their intact mass spectrometry (MS) analysis extremely challenging. We propose here a middle-up strategy for the analysis of the intact fragment crystallizable (Fc) region of human plasma IgGs, with the aim of acquiring integrated information of the N-glycosylation and other PTMs of subclasses and allotypes. Human plasma IgG was isolated using Fc-specific beads followed by an on-bead C H 2 domain digestion with the enzyme IdeS. The obtained mixture of Fc subunits was analyzed by capillary electrophoresis (CE) and hydrophilic interaction liquid chromatography (HILIC) hyphenated with MS. CE-MS provided separation of different IgG-subclasses and allotypes, while HILIC-MS allowed resolution of the different glycoforms and their oxidized variants. The orthogonality of these techniques was key to reliably assign Fc allotypes. Five individual donors were analyzed using this approach. Heterozygosis was observed in all the analyzed donors resulting in a total of 12 allotypes identified. The assignments were further confirmed using recombinant monoclonal IgG allotypes as standards. While the glycosylation patterns were similar within allotypes of the same subclass, clear differences were observed between IgG subclasses and donors, highlighting the relevance of the proposed approach. In a single analysis, glycosylation levels specific for each allotype, relative abundances of subclasses and information on co-occurring modifications are obtained. This middle-up method represents an important step toward a comprehensive analysis of immunoglobulin G-Fc variants.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Espectrometria de Massas , Cromatografia Líquida , Análise de Dados , Eletroforese Capilar , Glicosilação , Humanos , Alótipos de Imunoglobulina/imunologia , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho
14.
J Proteome Res ; 19(10): 4158-4162, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945168

RESUMO

Immunoglobulin G (IgG) glycosylation is a key post-translational modification in regulating IgG function. It is therefore a prominent target for biomarker discovery and a critical quality attribute of antibody-based biopharmaceuticals. A common approach for IgG glycosylation analysis is the measurement of tryptic glycopeptides. Glycosylation stability during sample processing is a key prerequisite for an accurate and robust analysis yet has hitherto hardly been studied. Especially, acid hydrolysis of sialic acids may be a source for instability. Therefore, we investigated acid denaturation, centrifugal vacuum concentration, and glycopeptide storage regarding changes in the IgG glycosylation profile. Intravenous IgG was analyzed employing imaginable deviations from a reference method and stress conditions. All glycosylation features -sialylation, galactosylation, bisection, and fucosylation-remained unchanged for most conditions. Only with prolonged exposure to acidic conditions at 37 °C, sialylation decreased significantly and subtle changes occurred for galactosylation. Consequently, provided that long or intense heating in acidic solutions is avoided, sample preparation for bottom-up glycoproteomics does not introduce conceivable biases.


Assuntos
Imunoglobulina G , Ácidos Siálicos , Glicopeptídeos , Glicosilação , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G/metabolismo , Manejo de Espécimes
15.
Anal Chem ; 92(19): 13172-13181, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32886488

RESUMO

Fc gamma receptors (FcγRs) translate antigen recognition by immunoglobulin G (IgG) into various immune responses. A better understanding of this key element of immunity promises novel insights into mechanisms of (auto-/allo-)immune diseases and more rationally designed antibody-based drugs. Glycosylation on both IgG and FcγR impacts their interaction dramatically. Regarding FcγR glycosylation profiling, major analytical challenges are associated with the presence of multiple glycosylation sites in close proximity and large structural heterogeneity. To address these challenges, we developed a straightforward and comprehensive analytical methodology to map FcγRIIIb glycosylation in primary human cells. After neutrophil isolation and immunoprecipitation, glycopeptides containing a single site each were generated by a dual-protease in-gel digestion. The complex mixture was resolved by liquid chromatography-tandem mass spectrometry (LC-MS/MS) providing information on the level of individual donors. In contrast to recently published alternatives for FcγRIIIb, we assessed its site-specific glycosylation in a single LC-MS/MS run and simultaneously determined the donor allotype. Studying FcγRIIIb derived from healthy donor neutrophils, we observed profound differences as compared to the soluble variant and the homologous FcγRIIIa on natural killer cells. This method will allow assessment of differences in FcγRIII glycosylation between individuals, cell types, subcellular locations, and pathophysiological conditions.


Assuntos
Neutrófilos/química , Mapeamento de Interação de Proteínas , Receptores de IgG/imunologia , Cromatografia Líquida , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/imunologia , Glicosilação , Voluntários Saudáveis , Humanos , Neutrófilos/citologia , Receptores de IgG/análise , Espectrometria de Massas em Tandem
16.
Front Immunol ; 11: 740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435243

RESUMO

Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fc-receptor (FcγR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene likely form a layer of variation in the strength of the ADCC-response, but this has never been studied in detail. We produced all 27 known IgG allotypes and assessed FcγRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved similarly within subclass, large allotype-specific variation was found for IgG3. ADCC capacity was affected by residues 291, 292, and 296 in the CH2 domain through altered affinity or avidity for FcγRIIIa. Furthermore, allotypic variation in hinge length affected ADCC, likely through altered proximity at the immunological synapse. Thus, these functional differences between IgG allotypes have important implications for therapeutic applications and susceptibility to infectious-, allo- or auto-immune diseases.


Assuntos
Alótipos de Imunoglobulina/metabolismo , Imunoglobulina G/metabolismo , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/imunologia , Receptores de IgG/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Células Cultivadas , Glicosilação , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Polimorfismo Genético , Ligação Proteica , Receptores de IgG/genética
17.
Front Chem ; 8: 138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185163

RESUMO

Changes in the abundance of antennary fucosylated glycans in human total plasma N-glycome (TPNG) have been associated with several diseases ranging from diabetes to various forms of cancer. However, it is challenging to address this important part of the human glycome. Most commonly, time-consuming chromatographic separations are performed to differentially quantify core and antenna fucosylation. Obtaining sufficient resolution for larger, more complex glycans can be challenging. We introduce a matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) assay for the relative quantitation of antennary fucosylation in TPNG. N-linked glycans are released from plasma by PNGase F and further treated with a core fucosidase before performing a linkage-informative sialic acid derivatization. The core fucosylated glycans are thus depleted while the remaining antennary fucosylated glycans are quantitated. Simultaneous quantitation of α2,3-linked sialic acids and antennary fucosylation allows an estimation of the sialyl-Lewis x motif. The approach is feasible using either ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry or time-of-flight mass spectrometry. The assay was used to investigate changes of antennary fucosylation as clinically relevant marker in 14 colorectal cancer patients. In accordance with a previous report, we found elevated levels of antennary fucosylation pre-surgery which decreased after tumor resection. The assay has the potential for revealing antennary fucosylation signatures in various conditions including diabetes and different types of cancer.

18.
Anal Chem ; 92(6): 4518-4526, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32091889

RESUMO

Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics.


Assuntos
Glicopeptídeos/sangue , Ensaios de Triagem em Larga Escala , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino
19.
Nat Commun ; 11(1): 120, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913287

RESUMO

Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease.


Assuntos
Imunoglobulina A/imunologia , Polissacarídeos/metabolismo , Adulto , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Autoanticorpos/química , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Feminino , Glicosilação , Humanos , Imunoglobulina A/química , Imunoglobulina A/metabolismo , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia
20.
Glycobiology ; 30(4): 226-240, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31281930

RESUMO

Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.


Assuntos
Doenças Transmissíveis/imunologia , Imunoglobulinas/análise , Imunoglobulinas/imunologia , Polissacarídeos/imunologia , Glicosilação , Humanos , Polissacarídeos/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...